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bration for each atom is approximately perpendicular 
to the bc plane, which is nearly the plane of the entire 
molecule. The smallest vibration is for the atom C(7) 
which is covalently bonded to three heavy atoms. The 
atom O(9), which is involved only in one hydrogen 
bond, has larger vibrations than O(8), which is bonded 
by two hydrogen bonds. 

Perdeuteroglycylglycine 

Freeman, Paul & Sabine (1967) have just completed 
a neutron diffraction study of fully deuterated glycyl- 
glycine, in its e form. They started their least-squares 
refinement with our preliminary least-squares param- 
eters. The deuteration has caused an increase in the 
length of a of approximately 0.12 A. Despite this change 
the intramolecular bond lengths and angles found for 
the heavy atoms of the molecule confirm those reported 
here to within about the sums of the standard devia- 
tions. They also find the peptide group to be non- 
planar. Their hydrogen (deuterium) bonds are sub- 
stantially the same as ours with the exception of 
N(1).--O(8),  across layers, which is approximately 
parallel to a. This length has increased from 2.712 to 
2.758 A. There are two of these bonds 'in tandem' in 
the a repeat and the total increase, 2 x (2.758-2.712)= 
0.092 A, seems to be associated with the 0.12 A in- 
crease in a. We leave the interpretation of these inter- 
esting deuteration effects to the authors who discovered 
them. We are grateful to Dr Freeman for a pre-publi- 
cation report on their results. 

One of us (BDS) would like to express gratitude to 
Professor Robert B. Corey, and all of us to Professor 
L. Pauling, for their continuing interest and encourage- 
ment. Further, we are grateful to Dr Richard E. Marsh 
for his helpful suggestions and for making available 
to us his program for the Burroughs 220 digital com- 
puter for all the later refinement calculations. This final 

refinement was carried out in part under a research 
grant H-2143 from the National Heart Institute, Na- 
tional Institutes of Health, United States Public Health 
Service. JNW and ABB held Fellowships supported 
respectively by Shell Development Co. and the Govern- 
ment of India. 
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The solutions of the equations Z: n~0~ = 6, 4, 3½, and 3 for 3-, 4-, 5-, and 6-connected plane nets respec- 
tively represent the permissible proportions of polygons of various kinds. They give no information 
about the arrangement of the polygons relative one to another. An examination is made of the possible 
configurations of the 3-connected 5:7, 4:8, 3:9 and 4:7 nets, a family of 4-connected nets, and nets 
with alternate p- and q-connected points. 

The general aim of these studies (Wells, 1954a, b,c,d, 
1955, 1956, 1965) is to further our understanding of 
the reasons for the adoption of a particular crystal 
structure by a given element or compound. The amount 

of effort that is being devoted to building up the basic 
geometrical background to crystal chemistry is sur- 
prisingly small compared with that devoted to the 
actual determination of crystal structures. Consider, 
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for example, the structures of the three polymorphs of 
phosphorus pentoxide. They present three problems: 
(1) All are formed from PO4 groups each sharing 3 
corners with other similar groups. The formation of 
4 tetrahedral bonds to oxygen is a problem of chemical 
bonding. Granted that the immediate bonding require- 
ments of P and O are satisfied in this way we now have 
(2) a purely topological problem, the investigation of 
the 3-connected systems, finite and infinite, from which 
the structures of (P2Os)n must be selected. [For an 
introduction to 3-connected nets and the derivation of 
some 3-D nets the reader is referred to part I (Wells, 
1954a)]. We find that this oxide adopts for one poly- 
morph the simplest possible polyhedral configuration 
(tetrahedron), for another the simplest 3-connected 
plane net (~06= 1), and for the third a 3-dimensional 
net. (3) The 3-D net chosen is one of the two simplest 
(Z=4)  but it is not the more symmetrical one. It is 
necessary to distinguish between ordinary (crystallo- 
graphic) symmetry and topological symmetry. The 
former is a matter of equality of lengths and angles, 
i.e. it is a metrical property. Topological symmetry is 
concerned with connectedness and the environment of 
points and polygons without reference to the actual 
numerical values of lengths and angles. The two sim- 
plest 3-D 3-connected nets (Nets 1 and 2) do in fact 
have different crystallographic symmetries in their most 
symmetrical configurations (respectively cubic and 
tetragonal, Z =  8), but the basic topological repeat unit 
in each consists of 4 points, and both nets can be re- 
ferred to a triclinic cell (Z=4).  However, regardless 
of the symmetries of particular configurations of the 
nets they differ in a more fundamental way. In Net 1 
every point is common to 15 10-gons and every link 
to 10 10-gons (x= 15,y= 10) whereas for Net 2, x =  10 
and Ymean=632- (Wells & Sharpe, 1963). Net 1 clearly 
has higher topological symmetry than Net 2. The rea- 
son for the choice of Net 2 rather than Net 1 by the 
third polymorph of P205 is presumably a geometrical 
one, that is, a matter of packing and interbond angles; 
it could equally well be described as a problem in 
energetics. 

We have chosen this simple example because it il- 
lustrates how the problem of accounting for the struc- 
tures of three polymorphs can be initially broken down 
into three parts. It would seem that far too little atten- 
tion is paid to the topological and geometrical aspects 
[(2) and (3)] of structures as compared with the 'elec- 
tronic' aspect (1), and that they have much more rele- 
vance to crystal chemical discussions than is generally 
realized. Two general points may be illustrated by 
simple examples. First, aspects of a structural problem 
are more easily seen if an analysis of the kind indicated 
is made. A crystal-field treatment of the CuCI~,- ion 
starting from a regular tetrahedral model accounts for 
the observed interbond angles. There are, however, 
possible structures for the CuCI4 z- ion other than the 
finite group, for example, infinite linear or two-dimen- 
sional arrangements of octahedral CuCI6 groups shar- 

ing edges or corners. Second, failure to classify a pro- 
blem into the correct category (1), (2), or (3) could 
lead to discussions of bonding which would be com- 
pletely irrelevant because of topological or geometrical 
restrictions. A simple example is provided by the O 
or S bond angles in CuO ar PtS, with a structure in 
which these angles are necessarily intermediate between 
90 ° and 109½ ° . [In this connexion it would be useful 
to know more about the dividing line between the 
topology and the geometry of connected networks. For 
example, the diamond net is essentially 'tetrahedral' 
in that it cannot be constructed with coplanar bonds 
and conversely the net Fig. l(d) of part VII (Wells & 
Sharpe, 1963) cannot be made with tetrahedral bonds]. 

Our main concern in these studies has been with the 
topological aspect (2) or perhaps, in view of the last 
remark, we should say with topological and geometrical 
aspects, (2) and (3). The results of such studies are 
twofold. First, they aim at deriving, within some speci- 
fied limits, the structures that can be built from a unit 
of a particular kind, e. g. 3- or 4-connected. It would 
seem highly desirable to know more about the struc- 
tures that are geometrically possible, for the conven- 
tional crystal chemical treatments tend to discuss struc- 
tures only in terms of other known structures. It is 
surely relevant to a discussion of the structures of 
dihalides to know that there is another AX2 structure 
in which A and X have the same immediate environ- 
ments as in the CdClz (C19) structure and yet there 
is no dihalide with this structure. Second, it is also 
important to know which structures are not possible for 
purely topological or geometrical reasons. An example 
of a topologically impossible structure was noted in 
part VI (Wells, 1956), namely, a simple layer structure 
for a compound AzX 3 having 6-coordination of A and 
4-coordination of X. (Reference is made to this struc- 
ture later.) The relevance to crystal chemistry of purely 
geometrical studies such as that of Andreini on space- 
filling arrangements of polyhedra or the recent work 
on linear systems of antiprisms (Aurivillius & Lund- 
gren, 1965) is obvious, but it is perhaps less obvious 
that this subject has a direct bearing on the discussion 
of radius ratios in simple ionic crystals. 

It is preferable to consider the domains of the ions 
m a crystal AmXn rather than the coordination poly- 
hedra, since the problem is then reduced to one of 
space filling by two (or more) kinds of polyhedron. 
The number of space-filling arrangements of polyhedra 
of high symmetry is strictly limited, and therefore the 
number of simple AmXn structures with highly sym- 
metrical domains is also limited for this purely geo- 
metrical reason. There is accordingly no reason to ex- 
pect that the preferred coordination groups will be 
exhibited by ions in the simplest ionic structures, which 
are subject to the severest geometrical restrictions, but 
rather that the greater freedom in the mode of packing 
in a complex structure is more likely to provide the 
most suitable environments for the ions. The conven- 
tional treatment of the structures of the alkali halides 
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does not suggest any simple connexion between radius 
ratio and structure type, and the cubic coordination 
of cations in the CsC1 and CaF2 structures should on 
this view not be regarded as the typical or preferred 
coordination group but as arising from the geometrical 
restrictions noted above. (Compare, for example, the 
coordination of Zr 4+ in the forms of ZrO2 with that 
in complex oxy compounds or that of alkali metal ions 
in simple and complex halides.) 

It would seem that geometrical and topological stu- 
dies have much to contribute to our understanding of 
structures. In this paper we examine some properties 
of plane nets, which have only been considered inci- 
dentally in these papers in connexion with the deriva- 
tion of 3-D nets. Their importance in layer structures 
needs no emphasis. Numerous structures are based on 
the simplest 3- and 4-connected plane nets ( P 6  = 1,p4 = 1 
respectively), and a few layers based on more complex 
nets are known. They include the 3-connected nets 
(4:8), (4:6: 12), and (5:7). 

Permitted combinations of polygons in plane nets 

If (on is the fraction of the total number of polygons 
which are n-gons then 27 n(0n = 6, 4,. 3½, and 3 respec- 
tively for 3-, 4-, 5-, and 6-connected plane nets. There 
are the following special solutions corresponding to 
p-connected nets consisting of polygons of one kind 
only: p n-gons 

3 6 
4 4 
6 3 

The missing member of this family, the net consisting 
of 5-gons, is a net with both 3- and 4-connected points. 
For such a net having a ratio q of 3- to 4-connected 
points, S n(0n = 2(3q + 4)/(q + 2), which has the special 
solution (05 = 1 for q=  2. 

There is clearly only one 6-connected plane net, and 
since we shall be concerned chiefly with 3- and 4-con- 
nected nets it is convenient to have their equations in 
expanded form: 

p = 3: 3(03 + 4(04 + 5(05 + 6(06 + 7(07 + 8(o8 + 9(09 + • . .  = 6 (1) 

p = 4: 3(03 + 4(04 + 5(05 + 6(06 + 7(07 -¢- 8(08 + 9(09 -¢-... = 4 (2) 

Solutions of equation (1), other than (06 = 1, are pos- 
sible only if some polygons have fewer and others more 
than 6 sides. For two  kinds of polygon (satisfying this 
condition) there is one solution for each combination 
of n~ and nz, the simplest being: 

(05 ~--- (07 : ½ ; (04 : {08 ~--- ½ ; and (03 : (09 = ½ "  

These (0 values do not completely define the net, for 
as we shall see there is an infinite number of ways of 
arranging the polygons, though the number of arrange- 
ments with topologically equivalent polygons of each 
kind would appear to be strictly limited, a point dis- 
cussed in relation to the 4:8 net. 

For three  (or more) values of n there is an infinite 
number of solutions having different values of (0nl, (0n2, 
and (0n3. Similar considerations apply to 4-connected 
nets. Summarizing: 

2 kinds of polygon: one solution for each pair of 
values of nl and n2 and for each solution an infinite 
number of relative arrangements of nl- and n2-gons. 

3 or more kinds of polygon: an infinite number of 
solutions (different values of (0nl, (0n2, and (0n3) each 
solution corresponding to an infinite number of ar- 
rangements of the polygons. 

These arrangements have values of Z (the number 
of points in the repeat unit) ranging from the smallest 
permissible value up to infinity. They represent a tran- 
sition from a conventional crystalline material with 
small repeat distances to the limiting case where the 
unit cell includes the whole infinite plane net, and pro- 
vide one way of looking at the change from crystalline 
to 'amorphous' solids and glasses. 

We examine first the 3-connected nets (05=(07=½, 
(04 = (08 m-~_½, and (03 • (0/99 = ½ ,  then two selected families 
of 4-connected nets, and finally amplify a point men- 
tioned in part VI (Wells, 1956) concerning nets with 
two types of point, p- and q-connected. 

Configurations of 3-connected plane nets 

The  ne t  (o5 = (07 = ½ 

Assuming that all the polygons of each kind have 
the same kinds and arrangements of nearest neigh- 
bours, let each 5-gon be surrounded by h 5-gons. Since 
there are equal numbers of 5-gons and 7-gons their 
neighbours must be: 

h 5-gons . { (5 -h )  5-gons 
5-gon ( 5 - h )  7-gons ' 7-gon (h+2) 7-gons. 

Evidently not all values of h are possible. The case 
h = 0  would correspond to a 5:7 net in which each 
5-gon is entirely surrounded by 7-gons. This would 
require that every 7-gon shares edges with 5 5-gons, 
implying adjacent 5-gons, which is not consistent with 
h = 0. The value h = 5 would correspond to a net com- 
posed entirely of 5-gons and may also be eliminated. 
The values 4 and 3 for h may be eliminated in the fol- 
lowing ways" 

h = 4: Let the 5-gon 5a in Fig. 1 (a) be surrounded by 
four 5-gons (and one 7-gon). Since 5b already has one 
7-gon neighbour its other neighbours must be 5-gons. 
Similarly for 5c, when the 7-gon has now two 5-gons 
neighbours, which is not compatible with h = 4. 

h = 3" There are two arrangements of three 5-gons 
around a 5-gon to be considered [Fig. l(b) and (c)]. 
If three 5-gons share edges with 5d then the same ar- 
rangement of polygons around 5e implies that each 
7-gon already has four 5-gon neighbours instead of 
5 - h = 2  as required. In the alternative arrangement 
[Fig. l(c)] let 5f share three adjacent edges with 5g, 5h, 
and 5j. The sharing of three adjacent edges with 5-gons 
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implies the 5-gon 5k which in turn leads to 5h sharing 
four edges with 5-gons, which is not permitted. 

We conclude that for the 5:7 net the only permis- 
sible values of h are 1 and 2. In any net consisting of 
equal numbers of 5- and 7-gons (or 4- and 8-gons, or 
3- and 9-gons), N of each, the total number of edges 
is 6N and the number of points 4N, so that for an 
integral number of 5-(or 7-)gons in the unit cell Z is 
a multiple of 4. For h =  1 the 5-gons are arranged in 
pairs with a common edge, and Z is therefore 8 or a 
multiple of 8. For h = 2  the 5-gons may be arranged 
in infinite strings ( Z =  8m) or in groups of three ( Z =  
12m) (Fig. 2). 

An interesting feature of the net of Fig.2(a) is that 
it can be dissected into strips A which are related to 
one another by a simple translation. If adjacent strips 
are related by a glide-reflexion line the net (d) is 

5 5 

5 5 

(a) 

5k 

5 ~  5h 5j 

(b) (c) 
Fig. 1. Derivation of (5 : 7) nets (see text). 

(a) 

(c) 

f 
/ 

B 

A 
B 

(b) 

(d) 
Fig.2. Configurations of the 3-connected (5:7) net. 

formed, and there is obviously an indefinite number 
of sequences of the two kinds of strip A and B. This 
family of nets is of interest in connexion with the crystal 
structure of ScB2Cz (Smith, Johnson & Nordine, 1965). 
Borocarbides MBzC2 are formed by a number of 4f  
elements and by Sc. All consist of 3-connected nets of 
B and C atoms between which lie the metal atoms. 
In the 4f  compounds the net is the 4:8 net but in the 
Sc compound the 5:7 net, the only example at present 
of this net in a crystal structure. Apart from the fact 
that the adoption of this net implies pairs of adjacent 
B and C atoms there is the additional point that the 
net in ScB2C2 is not the simplest 5:7 net with h =  1 
[Fig. 2(a)] but the form (d) with Z =  16. Fig. 3 shows 
the close correspondence between layers of types (a) 
and (d) of Fig.2. From aa to bb they correspond ex- 
actly, from bb to a'a '  only partially, and at a'a '  they 
again superpose exactly. It would be interesting to 
know the reasons for the adoption of the ScBzCz struc- 
ture. 

As a matter of interest it may be noted that attempts 
to make h > 2 in the 5: 7 net lead to nets of other kinds, 
such as the infinite linear arrangement ~0s=~; ¢07=½ 
[Fig.4(a)], or the two-dimensional nets: 

¢0s =-~; ~0x0= ½, [Fig. 4(b)] 
and ~05 = ~; ¢012 = 4, [Fig. 4(c)]. 

The  ne t  ¢o4 = ~o8 = ½ 

Assuming that all polygons of each kind have the 
same immediate environment let the (edge-sharing) 
neighbours of a 4-gon and 8-gon be: 

{ h4-gons 8 . g o n { 4 - h 4 - g  °ns 
4-gon 4 -  h 8-gons 4 +  h 8-gons. 

Here the case h = 0 is possible because four 4-gons may 
be placed around an 8-gon without 4-gons sharing 
edges one with another. The unique solution for h = 0  
arises by placing the unit (a) of Fig. 5 at the points of 

I 

}Z ' - '  

a "  ~ - - -  a '  

Fig. 3. Correspondence between the nets of Fig.2(a) and (d). 
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the simplest 4-connected plane net [Fig.6(a)]. Nets 
having h =  1 and h = 2  arise by placing the unit (b) of 
Fig. 5 at the 4-connected points of the appropriate (3,4)- 
connected net and the unit (c) at the points of the 
simplest 3-connected plane net. (The sharing of a pair 
of opposite edges between 4-gons, for h = 2, does not 
lead to a plane 4 :8  net.) The resulting 4:8 nets are 
shown in Fig. 6(b), (c) and (d). If the orientations of 
the added 4-gon units in Fig. 6(b) are different in suc- 
cessive horizontal rows - they must all be similarly 
oriented in a given row - an indefinite number of nets 
can be formed, all having h = 1 and progressively larger 
unit cells. There is also an indefinite number of nets 
of type (d) with mixed orientations of the portion en- 
closed within the heavy lines. If we relax the condition 
that all polygons of each kind have the same arrange- 
ment of nearest neighbours then infinite families of nets 
arise having, for example, all 4-gons equivalent but two 
or more types of 8-gon [Fig. 6(e)] or two or more types 
of both 4- and 8-gon [Fig. 6(f)]. 

The net  q~3 = ~o9 =½ 

Proceeding as before the cases h = 2  or 3 may be 
eliminated by arguments similar to those already used. 
Fig.7 shows three nets with h = 0  and one, (d), with 

(a) 

h = 1, of which the last gives an infinite series of nets 
having different orientations of the portion enclosed 
within the heavy lines. 

Summarizing, the permissible values of h for the nets 
discussed are: 

Net h 
, ,  

5:7 1 
4"8 0 1 2 
3:9 0 1 

2 

Of the 11 nets illustrated in Figs. 2, 6, and 7 [excluding 
2(d); 6(e) and (f)] four give rise to infinite families of 
nets in all of which each type of polygon retains the 
same arrangement of nearest neighbours as in the basic 
net. 

The 3-connected 4:7 and 4:8 plane nets 

There is an infinite family of 3-connected plane nets 
composed of 4-gons and only one other kind of poly- 
gon, of which the first four members are" 

-< 

(a) (b) 

7- 

(b) (c) 

Fig.4. Some 3-connected nets containing pentagons (see text). 

(a) (b) (c) 

Fig. 5. Derivation of (4: 8) nets with h = 0, 1, and 2. 

(c) (d) 

(e) CO 

Fig. 6. Configurations of the 3-connected (4:8) net. 



(04 

(c) 

~7 ~8 ~9 ~10 

1 
2 

2 

1 

etc. 

By adding a point above and below the centre of a 
4-gon in the plane 4:8 net an octahedron is formed. 
These points may then be connected by further links 
to the corresponding points of layers above and below 
to give a three-dimensional 5-connected net consisting 
of octahedra joined as in the B framework of CAB6. 
It is of interest to know which other structures of this 
type are possible. A section through a net of this kind 
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(a) 
(b) 

(d) 

Fig.7. Configurations of the 3-connected (3:9) net. 

(a) (b) 

Fig. 8. Two configurations of the 3-connected (4: 7) net. 

is a 3-connected net containing 4-gons which do not 
share edges or vertices with other 4-gons. It can be 
shown that:  

Of the family of  3-connected nets composed of  4-gons 
and only one other type of  polygon only the 4:7 and 4: 8 
nets can be realized with discrete 4-gons. 

If a 4-gon is to be surrounded entirely by n-gons in 
a net having a ratio c~ of 4-gons to n-gons, then the 
number of 4-gons surrounding an n-gon must be 4e, 
assuming all polygons of a given kind to be topological- 
ly equivalent. To avoid adjacent (edge-sharing) 4-gons 
4c~ must not exceed n/2, a limit reached at n = 8. Sup- 
posing the n-gons not to be topologically equivalent 
then on average they must share edges with 4e 4-gons, 
and if some have fewer others must have more than 
4~ 4-gon neighbours, which would imply the sharing 
of edges between 4-gons. The only nets satisfying the 
condition are therefore the 4:7 and 4:8 nets. 

It is of interest that the form of the 4:7 net on which 
the structure of UB4 is based is not the simplest one 
[Fig. 8(a)] but the variant (b) which has a more uniform 
distribution of 4-gons around a 7-gon. 

A family of 4-connected plane nets 

Certain structures formed from octahedral groups 
linked to six others through their vertices can be dis- 
sected into slices one octahedron thick which then 
stack vertically above one another. The equatorial 
edges of the octahedra in one slice form a 4-connected 
net, but it is simpler to work with the net, also 4-con- 
nected, which results from joining together the M 
atoms at the centres of the octahedra. Fig. 9 shows the 
octahedral framework of NaNb6015F illustrated in this 
way. The net derived in this way from the ReO3 (cubic 
bronze) structure is the simplest plane 4-connected net, 
q~4 = 1, that from the hexagonal bronze structure is the 
net, (03=~, (06=½, and from the tetragonal bronze 
structure, (03 =-~, ~04 = ½, ~05 = ~}. The structures of 
NaNb6015F and LiNb6015F may also be represented 
in this way if the atoms at the centres of the pentagons 
are omitted. 

4-connected nets consisting of 3-, 4-, and 5-gons have 
fractions ~o~ of k-gons given by: 

3~03 + 4(04 + 5~o5 = 4 ,  

the solutions of which are ~o3 = ~o5 = a/m, (o4 = ( m -  2a)/m, 
where a, b and m are integers (m > 2). Of the infinite 
set of solutions the simplest are: 

~03 ~, ¼, ~, ~, ~, 
~0 4 _~, ~_, ~, 1, _~, etc. 

e5~,~,k,~,~,  

The facts that the Li and Na compounds mentioned 
above are based on different nets (i.e. different solu- 
tions of S n~on = 4) and that in the Li compound there 
are topologically non-equivalent 4-gons show that these 
compounds present a formidable problem: 
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~03 (/94 ~5 
Tetragonal bronze } 
NaNb6OlsF ~ ½ 
LiNb6OlsF -} ~ ½ 

The following note, confined to a study of only one 
of these nets, may be of interest rather as illustrating 
the complexity of the problem than throwing much 
light on the reasons for the choice of structure in this 
group of compounds. 

The 4-connected plane net: ~o3 = ~r, ~o4 = ~ ,  ~05 = ~5 

We assume all polygons of a given kind to be topo- 
logically equivalent and describe the configurations of 
the net in terms of the 'coordination' (edge-sharing) 
of one polygon by neighbouring polygons. These co- 
ordination numbers are related to the values of (on. 
For example, if a 3-gon has k 4-gon (edge-sharing) 
neighbours then a 4-gon must have 2k 3-gon neigh- 
bours because q3 = 2~04. Three parameters are required 
to define a net: 

h 3-gons { 2k 3-gons 
3-gon k 4-gons 4-gon l 4-gons 

3 - h -  k 5-gons 4 -  2 k -  l 5-gons 

3 - h - k  3-gons 
5-gon 2 - k -  ½l 4-gons 

h + 2k + ½l 5-gons 

where h and k must lie between 0 and 3 and l between 
0 and 4 inclusive. 

Certain restrictions on the values of h, k, and l fol- 
low from arguments such as the following. From the 
coordination of a 5-gon, it follows that l is even. The 
value l=  4 may be excluded since it would imply that 
a 4-.gon is surrounded entirely by 4-gons (i.e. plane 
4-gon net). Therefore the possible values of l are 0 or 
2 only. The value 3 for h can be excluded by a similar 
argument, and the impossibility of surrounding a 4-gon 
by more than 4 3-gons eliminates k = 3. It is then neces- 
sary to study each of the combinations of the remain- 
ing values of h, k, and l, namely, h and k = 0, 1, or 2 
for l = 0  and for l=2 .  Since the maximum value of 
h + k is clearly 3, the combination h = k = 2 is inadmis- 
sible, so that there are 16 combinations of h, k, and l 
to investigate. The procedure is to start to construct 
the net and to show either that a periodic net with the 
specified values of h, k, and l arises, or that at some 
stage it becomes impossible to proceed further while 
maintaining these values and the topological equi- 
valence of the polygons of each kind. 

The solutions found are shown in Fig. 10. Note that 
the values of h, k, and l do not necessarily uniquely 
characterize the net. There are, for example, two solu- 
tions, (a) and (b) for h = k = l = O .  For the structures 
under discussion only solutions with h = 0 are relevant, 
for solutions with h > 0 involve the sharing of edges 
between triangles. This is geometrically impossible if 
the 4-gons approximate to squares (Fig. 11). 

Fig.9. Plan of NaNb6OlsF showing (thin lines) equatorial 
edges of octahedral coordination groups and (thick lines) the 
4-connected net formed by joining atoms at centres of metal- 
oxygen octahedra. 

(a) (0,0,0) 

(c) (O,l,O) 

(b) (0,0,0) 

X X  

(d) (1,0,0) 

o 

o 

(e) (1,0,2) 

" ~ /  \ r /  

/\ I> 

(f) (2,0,2) 

Fig. 10. Configurations of the 4-connected plane net, q~3=~, 
_ i ~05 = ~. Small circles markcorners of repeat unit. Figures (04 ~ ~', 

in parentheses are values of h, k and 1. 
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Fig. 11. The case h > 0 in certain 4-connected nets (see text). 

(a) (b) 

(c) 

Fig. 12. The three plane nets with alternating p- and q-connected 
points. 

Of the three nets with h = 0, Fig. 10 (a), (b) and (e), 
two are known to represent actual crystal structures, 
namely (b), tetragonal bronzes, and (c), NaNb6015F. 

Plane nets with alternating p- and q-connected points 

Nets in which points of two kinds (p- and q-connected) 
alternate are of special interest in connexion with the 
structures of compounds AmXn in which the coordina- 
tion numbers of both A and X are 3 or more. The 
simple layer structure of Mg(OH)2 may be represented 
as a plane (6,3)-connected net and the Ge3N4 structure 
as a three-dimensional (4,3)-connected net. Incidental 
to the derivation of three-dimensional nets in part 6 
(Wells, 1956) it was noted that a simple layer structure 
is not possible for a compound A2X3 if A is to be 6- 
and X 4-coordinated. The following is a more complete 
treatment of this problem. 

The only possible plane nets composed of  alternate points 
of  two kinds c~ and Cq are the c3:c4, c3:c5, and c3:c6 nets 

If p- and q-connected points alternate all the poly- 
gons must have even numbers of edges, in which case 

the maximum attainable ratio of links to points is 
reached when the number of edges of each polygon 
is the smallest possible, namely 4. We first show that 
for any plane net composed of 4-gons the ratio of 
links to points is 2 regardless of the connectedness of 
the points. In the reciprocal net all points are 4-con- 
nected and their number is that of original 4-gons 
(say, N). The number of links in the reciprocal net is 
equal to the number of links in the original net. This 
number is 2N since every 4-gon has 4 edges and each 
edge is common to two 4-gons. We require to find the 
number of polygons (N*) in the reciprocal net, which 
is equal to the number of points in the original net. 
The number of points (N) in the reciprocal net is equal 
to N* ~r n~on/4 where ~0n is the fraction of n-gons. But 
for a 4-connected net Xn~on=4 whence N=N*.  The 
number of polygons in the reciprocal net and of points 
in the original net is therefore N, and the ratio of links 
to points is 2. 

For a periodic net consisting of alternate p- and q- 
connected points the fractions of these points are 
q/(p+q) and p/(p+q) respectively and therefore the 
number of links is pqN/(p+q), whence the ratio of 
links to points is pq/(p+q). The only combinations 
of (different values of) p and q ( > 3) giving pq/(p + q) 
~. 2 are 3 and 4, 3 and 5, and 3 and 6. The correspond- 
ing nets are shown in Fig. 12. 

"> 3' 1 j ~ = ~  f s = ~  Z = 7  

(b) e3 = s  c5 
J '4=~ f6 Z = 8  

(C) e3 = 3 z C6 
J~--1 Z = 3 .  
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